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A geostatistical approach for modelling and combining spatial
data with different support
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The paper proposes a geostatistical framework to solve the issues of heterogeneous support for spatial estimation. Apparent soil
electrical conductivity (ECa) was measured in a field cropped with San Marzano tomato using a multiple frequency electromagnetic
profiler with 6 operating frequencies. Mixed support kriging was used to estimate ECa taking into account the change of support.
The method includes punctual kriging with the error being the dispersion variance associated with each frequency. The individual
ECa maps were weighted by the dispersion variance to obtain a map which was used for field partition in management zones.
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Introduction

Large amounts and types of data are continuously made
available by different proximal and remote sensors with their
particular sensing modes. Therefore, it is common that dif-
ferent instruments are used in conjunction with one another
(data fusion) to take advantage of their complementary
characteristics. Data fusion is defined as “the process of
combining information from heterogeneous sources into
a single composite picture of the relevant process, such that
the composite picture is generally more accurate and
complete than that derived from any single source alone”
(Hall & McMullen, 2004). However, there is not yet a single,
well established data fusion methodology for combining
sensor data in a rigorous way. Moreover, depending on
context, ‘data fusion’ may assume different meanings such
as information fusion, sensor fusion or image fusion. Infor-
mation fusion is the process of merging information from
different sources; sensor fusion is the combination of data
from different sensors and image fusion is the fusion of two
or more images into one, which should be a more useful
image. Furthermore, the data may have different spatial
resolutions (support sizes), shapes and configurations, and
their combination results in the problem of change of
support. Failure to address such a problem might result in
erroneous conclusions when inferences drawn from aggre-
gated data are applied to point units (Nguyen et al., 2014).
To merge such data, ad hoc methods are often used in
many GIS packages. Union, intersection, zonal averaging,

pixel-by-pixel computations between two rasters with
different supports are some of the fusion operations feasible
in GIS software. These methods have the advantage of being
fast and scalable, but they do not treat the change of support
problem. Consequently, there is ambiguity about the support
of the output and there is no measure of uncertainty associ-
ated with the input or the prediction (Nguyen et al., 2014).
A data fusion approach from a statistical point of view

aims to combine heterogeneous samples statistically from
marginal distributions to make inferences about the unob-
served joint distributions or functions of them (Braverman,
2008). Although this approach treats the problem of change
of support and the assessment of uncertainty explicitly, it is
not directly applicable to spatial datasets because it assumes
that observations are independent of one another, which is
generally not true for spatial data. Various methodologies
have been developed to account for covariance in spatial
datasets; geostatistics is a branch of applied statistics that
deals specifically with spatial relations. Geostatistics enables
rigorous treatment of spatial correlation by using a mathe-
matical model, called variogram, and a class of methodo-
logies, called kriging, which calculate the mean-squared
prediction errors.
Lajaunie (1996) developed a methodology, called mixed

support kriging (MSK), based on the theory of random
kriging (Journel & Huijbregts, 1978), which aims to solve
a kriging system when the data are on different supports.
The MSK has been used in the analysis of mineral resources
by Bush (2010) to optimize the prediction of diamond
concentrations from all available data on different sizes
of support.† E-mail: gabriele.buttafuoco@cnr.it
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The objective of this paper is to propose a methodology
within a geostatistical framework to solve the issues of
heterogeneous spatial support for estimation in a spatial
context. In this paper, MSK was applied to the outcomes of
a multiple frequency sensor to produce a map of apparent
electrical conductivity for the soil of an agricultural field,
which could be used for field partition in the scope of
site-specific management.

Materials and methods

Study area
The study area (Figure 1) is located in the Campania region
(central Italy) on the plain of the Sarno river and is
characterised by an alluvial system that produces stony-
sandy soils in silt matrix. The climate is Mediterranean
with winter characterised as rather mild and rainy, whereas
the summer is very hot and dry (Longobardi et al., 2016).
In 2014, a soil survey was carried out to measure the

apparent soil electrical conductivity (ECa, mS m
−1) in a field

(0.4 ha) cropped with San Marzano tomato. The ECa was
measured by a multiple frequency electromagnetic profiler
GEM300® (Geophysical survey Systems, Inc. USA), which
was set at six operating frequencies (19 975; 12 975; 8425;
5475; 3575 and 2325 Hz) with the coils in a vertical orien-
tation. Each operating frequency had a different depth of
investigation and therefore explored a different soil volume.
The maximum depth of investigation (Table 1) was calcu-
lated as the square root of skin depth (Daniels et al., 2008),
choosing a detection threshold of 30% for soil conductivity
less than 50mS m−1 (Huang, 2005; Reynolds, 2011). The
survey was carried out along 24 transects (Figure 1).

Data analysis: Geostatistical and statistical procedures
Random kriging (RK) (Maréchal and Serra, 1970; Journel &
Huijbregts, 1978) is based on a simplified version of block

kriging, which estimates a value over a block V (support)
as a weighted average of the data values on a point support
at the locations Xi :

Z�ðVÞ=
X
i

λiZðXiÞ: (1)

The particular feature of RK is that the point value Z at Xi is
replaced by a block estimate over a block V that contains the
point Xi, but it is assumed to be located at a random point xi
within the same block V. This is an interesting way to
homogenize the data to the same support so that punctual
kriging (Webster and Oliver, 2007) can be applied. If it is
assumed that the position of the datum point is random
within the block and independent of the positions of the
other data points, the covariance between two data points
is given by:
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Vi
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Cðx�yÞdxdy;

(2)

where Cðx�yÞ refers to the covariance model on a point
support, vi and vj refer to the volumes of two distinct sup-
ports and CðVi;VjÞ is the block covariance. This means that
the point–point covariance can be calculated as the block
covariance for the distance between the two centroids of the
blocks that contain the data. Equation (2) remains valid even
when i and j represent two different data points within the
same block, and then the two supports are the same.
Therefore, the diagonal terms of the kriging system depend
only on the different supports vi and their dispersion
variances within the domain D of study, σ2vi .
Random kriging or mixed support kriging (MSK) is quite

similar to classical kriging with the difference that each
datum has its own variance, which amounts to performing
kriging with the variance of the measurement error (Chilès
and Delfiner, 2012). In MSK, the diagonal of the kriging

Figure 1 Study area and sample data locations.
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system is modified by adding a variance specific to each
datum, which generally stems from uncertainty associated
with the measurement. In the case of MSK, the variance
represents the dispersion variance of the data support, vi,
in the estimation block V (var vi Vjð Þ).
When the variogram model is estimated over the block

support, the diagonal term in the kriging system is the sum of
two components: the dispersion variance of blocks within the
domain (Var V Djð Þ) and dispersion variance of the support
within the block (Var vi Vjð Þ). Therefore, in accordance with
the variance additivity relation, the dispersion variance of
the support within the domain is given by:

var vi Djð Þ= var vi Vjð Þ + V Djð Þ= σ2vi (3)

as required by MSK.
In summary, MSK is performed in two steps:

∙ Calculation of the dispersion variance of the support within
the block to be kriged, i.e. (Var vi Vjð Þ), with the
parameters from the point variogram model;

∙ Block kriging with parameters of the block variogram
model, and with the variance of the measurement error
calculated in the previous step.

To model variogram on a point support, the variogram
was calculated on the smallest support, corresponding to the
highest operating frequency (19 975 Hz). All other supports
were considered as multiples of the point support on the
basis of the effective soil depth surveyed by the lower
frequencies. The point variogram was then regularised over
each parallelepiped (support), whose dimensions were
determined previously. The data were interpolated over

blocks of 2m by 2m by 1.5m. Each map for the different
operating frequencies represents a different picture of the
same object and their differences stem mostly from the
different volumes of soil crossed by the electromagnetic
waves with different frequencies. More exhaustive informa-
tion can be obtained through a proper combination of all
these maps, which take into account the different amounts of
uncertainty. To do that and with the objective to delineate
homogeneous zones within the field for site specific man-
agement, a direct and fast approach is the weighted principal
component analysis (WPCA) where the weight function is
given by the dispersion variance.
The mixed support kriging was implemented in ISATIS®

software (Geovariances, 2016).

Results and Discussion

Six channels of soil bulk electrical conductivity (ECa) data
were available corresponding to the different frequencies
and different soil volumes (supports) that they were associ-
ated with (Table 1). Given the particular arrangement of the
measurement equipment, all the data types have the same
number of observations at the same locations on the soil
surface. The summary statistics of ECa data at the different
frequencies showed a considerable departure from a normal
distribution (Table 2). Therefore, all data were normalized
by fitting a multivariate Gaussian anamorphosis mathe-
matical model (Wackernagel, 2003; Castrignanò and
Buttafuoco, 2004).
To implement MSK, the first step was to create a new file

for storing the samples, which were moved to the centres of
the blocks (V) of the interpolation grid and to calculate the
dispersion variance of the data support within the block.
A punctual variogram model, based on the smallest support
associated with the frequency of 19 975 Hz, was fitted
including a nugget effect and two spherical models with
ranges of 6.39m and 40.21m (Figure 2), i.e. a nested
spherical function.
The variograms for a block support were obtained by

regularization over the supports; they are shown in Figure 3.
The nugget effect for all supports was calculated by the

ratios of the ‘punctual’ support volume and of the other
support volumes. The same type of mathematical model was

Table 2 Basic statistics of ECa (mS m
−1) data at the different operating frequencies

Operating frequency (Hz)

2325 3537 5475 8425 12 975 19 975
Mean 40.18 27.07 50.69 61.94 70.94 90.20
Minimum 3.87 5.03 9.60 33.16 60.10 78.65
Lower quartile 28.18 18.73 44.05 56.49 66.51 85.88
Median 30.97 20.95 46.16 59.35 68.50 88.40
Upper quartile 34.99 24.07 49.38 62.43 71.20 91.36
Maximum 1701.52 973.86 591.25 389.36 266.14 208.11
Stand. Dev. 69.75 40.11 24.73 17.30 12.71 10.85
Skewness 17.95 15.08 11.20 8.14 6.39 4.91
Kurtosis 394.13 308.12 197.55 112.98 62.33 32.99

Table 1 Maximum depth of investigation associated with each
operating frequency

Operating frequency (Hz) Maximum depth of investigation (m)

2325 4.67
3537 3.77
5475 3.04
8425 2.45
12 975 1.98
19 975 1.59
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fitted to all block variograms, including a nugget effect and
two spherical models with ranges of 5.7m and 28.27m. As it
can be seen from the Figure 3, there is a tendency for the sills
of the variograms to decrease as a function of the reduction
in frequency and of the increase in size of support. This effect
can be explained by integration of the electromagnetic signal
over a larger volume of soil.
The assessment of the dispersion variance (Table 3),

corresponding to the different frequencies, confirmed the

previous result, i.e. that the variance varied as a direct
function of frequency, due to the bigger soil volume explored
by lower frequencies.
The ECa responses associated with the higher frequencies

are noisier, but they have a finer spatial resolution. This
result highlights the need to account for the different
statistical properties of each signal, which also means that
their different degrees of uncertainty must also be taken into
account when jointly analysing the outcomes of different
sensors. Each sensor produces a different image with a
different degree of reliability of the same object. Precision
and spatial resolution are often conflicting characteristics of
the same sensor and they need to be assessed accurately to
make the optimal choice of the sensors for the study of
the processes of primary interest.

Figure 2 Experimental and model punctual variogram for Gaussian ECa
(−) data at the operating frequency of 19 975 Hz.

Figure 3 Regularised variograms of Gaussian ECa (−) data at the different operating frequencies.

Table 3 Dispersion variance of Gaussian ECa data associated with
each operating frequency

Operating frequency (Hz) Dispersion variance (−)

2325 0.0131
3537 0.0195
5475 0.0219
8425 0.0284
12 975 0.0358
19 975 0.0338
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Figure 4 shows the ECa maps obtained with MSK at the
selected operating frequencies.
The maps for the different operating frequencies look quite

similar, but they do differ in their absolute values and
corresponding error variances. To aggregate and summarise
these maps, the first principal component of the weighted
principal component analysis (WPCA), as a new variable,
was used for the management zones delineation. The first
principal component explains more than 91% of the total
variance and the resultant map is shown in Figure 5.
The map (Figure 5) reproduces the main spatial structures

observed in each individual map, but it combines them. It
enhances the contribution of the shallow soil, and so gives
an integrated representation of the whole soil profile which
was effectively explored by the electromagnetic waves.
The N–S field partition was associated with the differences

in soil texture and in the variable depth of the shallow
groundwater, which affects local soil water content (internal
report not published). This information is valuable for
planning site-specific irrigation

Conclusions

The question of the best way to integrate different types of
data to derive the most information is a common problem. At
present environmental databases often include the outcomes
from different sensors, characterised by various spatial

resolutions and degrees of uncertainty. From a statistical
point of view, disregarding the heterogeneity of data, by
merging all data together, might lead to considerable
estimation errors and bias. Geostatistics can produce
a satisfactory solution to this common problem by taking the
change of support into account. Mixed support kriging,
which is essentially the method of kriging with variance of
the measurement error, can provide unbiased estimates and

Figure 4 Maps of ECa (mS m
−1) at the selected frequencies.

Figure 5 Map of the first component from the weighted principal
component analysis (WPCA).
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improve the precision of estimation. Moreover, the increase
in use of GIS systems makes the problem of change of
support a crucial issue. Valid methods for combining differ-
ent spatial data might be implemented in GIS systems in the
near future to ensure that proper methods are used for
spatial analysis.
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